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Abstract 

Design complexity has been increasing 
exponentially this last decade. In order to cope 
with such an increase and to keep up 
designers' productivity, higher level 
specifications were required. Moreover new 
synthesis systems, starting with a high level 
specification, have been developed in order to 
automate and speed digital system design. 

Keys-Words: VLSI, CAD, High-Level Synthesis, 
Architectural Synthesis, HDL, 
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Introduction 
The arrival and acceptance of standard Hardware 

Design Languages (HDLs) such as VHDL and Verilog, 
have promoted high level specification of electronic 
circuits. HDLs may be used for the specification of 
whole systems, as well as sub-systems that may then be 
assembled within a hierarchical (structural) description. 
The fact that various tools (for synthesis and 
simulation) have been developed this last decade has 
also helped high level specification for VLSI to emerge 
and to gain more and more acceptance in the VLSI 
design community [1]. 

 

1.1. Motivation for high level specification 
Nowadays one of the major objectives within VLSI 

domain is the improvement of the design quality and of 
the designers' productivity. This is due to the fact that 
the design process is characterized by 2 sets of factors : 
constant factors and variable ones. For instance typical 
large design budgets are usually fixed to around 10 to 
15 persons over 18 months, and designers' productivity 
has been evaluated to some 10 objects per day. 

Controversely, design complexity has been 
increasing exponentially since 1984 from a hundred 

thousand transistors, to reach 1 to 2 million transistors 
today. The design complexity forecast for the year 2000 
is 50 million transistors for a 0.18 micron CMOS 
technology. In order to cope with such an increase in 
complexity, with the fixed budget, the objects designed 
have gained in abstraction degree; thus instead of 
designing 10 transistors daily as in the 80's, designers 
are now creating some 10 algorithmic lines or mega 
blocks per day. This shift has been smooth and the 
objects handled have been gates and RTL HDL lines 
meanwhile. The future shall be about designing system-
level specifications and sub-systems. 

HDLs can be used for design specification at 
various abstraction levels, from gates to the behavioral 
level. We shall first go over the main abstraction levels, 
which are usually encountered within a usual design-
flow, in section 2. A whole set of languages for high 
level specifications at the behavioral and system levels 
is introduced. We shall have a quick glance at a small 
subset in section 3. Nowadays it becomes crucial to 
speed up the design-flow so that the time to market is 
reduced. Consequently, CAD tools are being more and 
more used for synthesis. Register transfer level (RTL) 
synthesis tools are commonly used and higher level 
synthesis tools are now required. Section 4 is about 
behavioral synthesis and the inputs required. Among 
the different existing HDLs used at the behavioral level, 
VHDL is the most commonly used being a standardized 
IEEE HDL. This paper shall thus refer to this HDL for 
high level specification. More details about the design 
methodology are given in section 5. 

 

2. Abstraction levels 
Four abstraction levels shall be studied in this 

section; their comparisons are about the following 
characteristics: the time unit involved, the primitives 
used for the specification and the description 
organization for each of the description levels (figure 1) 
[2]. 

Timing is used as a reference for classifying the 
different specification levels, as it is one of the main 



issue (if it is not the main one) during the process of 
designing an integrated circuit. In fact, regardless the 
abstraction level, the design process may be defined as 
the refinement of high level concepts (including 

operations, primitives, statements or constructs) into 
lower level concepts using more detailed timing units. 
Figure 1 illustrates this concept. 

 

Description Level Time Unit Primitives Description 
Organization 

Physical Level Delay Gates, Devices Schematics 

Logic and RT Levels Clock Cycle Register-Operator 
Transfers 

Boolean Equations, 
FSMs 

Algorithmic Level Control Step Computation Control BFSs, DFGs, CFGs 

System Level Task Process, 

Communication 

Communicating 
Processes 

Figure 1: Abstraction Levels 

2.1. Lower abstraction levels: physical, logic 
and register transfer levels 

At the lowest abstraction level the basic timing unit 
is the delay within schematics. The design at the 
physical level being specified in terms of gates and 
devices interconnected through nets, timing is done in 
considering gate and net latencies [3]. 

The next description level is called the register 
transfer or logic level, where the design is specified at 
the clock cycle level. A typical description states which 
operations to execute at each clock cycle. In fact 
descriptions at this level are generally made of a set of 
registers and operators, and the functions to be executed 
by the datapath are expressed as data transfers between 
registers and executing blocks. Typical representations 
used at this level are boolean equations, finite state 
machines and BDDs. The description and simulation of 
a whole system at the clock cycle level can be done 
using register transfer level (RTL) primitives. 

 

2.2. Architectural or behavioral level 
At the behavioral or architectural level, the design is 

specified in terms of control steps by means of 
programs, algorithms, flowcharts, etc [2]. The concept 
of operations and control statements is used to sequence 
the input and output events; control statements, within 
VHDL for instance, consist of instructions such as loop 
and wait statements. Typical representations at this 
level are behavioral finite state machines, control-flow 
graphs, data-flow graphs and control/data-flow graphs, 
all corresponding to event-driven specifications. 
Descriptions at this level are often composed of a set of 
protocols to exchange data with the external world and 
an internal computation. The computation step being 
itself composed of a set of operations executed between 
two successive input or/and output events, may take 
several clock cycles. 
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Figure 2: Design iteration at the behavioral level 

 

 

 

2.3. Higher abstraction level: system level 
The highest level of abstraction corresponds to the 

system level [4] [5]. Specification at this level includes 
distributed control and multi-thread computation, and 
the corresponding basic timing unit is the computation 



task. System level descriptions are composed of a set of 
hierarchical, parallel and communicating processes. The 
basic primitive is the process, which may consist of a 
hardware part as well as a software one. Each of these 
sub-systems may be as complex as a behavioral 
description. 

 

2.4. Design process 
The whole design process consists in a set of 

translation steps of a given specification into another 
one of lower abstraction. Each of the translation step 
corresponds to a design iteration, which has to be 
repeated in case the design contraints are not satisfied. 
The validation of a specification is thus an important 
task that has to be performed as early as possible in the 
design-flow, in order to minimize the amount of design 
iterations. One design iteration is illustrated in figure 2, 
with the behavioral synthesis step. 

For large hierarchical designs, each of its sub-
systems can be designed independently using different 
CAD tools. The verification of the coherence of a sub-
system, once it has been synthesized, can be achieved 
by plugging the synthesized description within the 
validated environment. Undertaking such a validation 
as from the beginning of the synthesis-flow and at 
several abstraction levels allows to delimit any 
problems more easily earlier. 

High level descriptions are usually smaller in size; 
besides such descriptions are close to the algorithms 
they implement, making it easier to write them. 
Therefore these descriptions are also easier to maintain 
and to debug. Moreover the simulation at this level is 
faster. 

 

3. High level specification languages 
A wide range of high level specification languages 

is available today. Owing to their different 
characteristics (structure, hierarchy, concurrency, 
synchronization, ...), they have been chosen for input by 
different synthesis systems, according to the synthesis 
performed : system level or behavioral level, control-
flow dominated oriented circuits or digital signal 
processings. 

All the existing high level specification languages 
are based only on few concepts. First there are HDLs 
(Hardware Description Languages) such as VHDL, 
Verilog and HardwareC. These allow sequential 
statements within processes as well as data-flow 
behaviors, except HardwareC (which restricts data-flow 
behaviors to simple netlists). They can thus be used to 
describe behavioral level descriptions of both control-
flow dominated circuits and DSPs (based on data-flow 
models). Hierarchy can be expressed within HDLs 

through concurrent processes, blocks and component 
instanciations. System level specifications can also be 
achieved by these languages as they enable task level 
concurrency (concurrency within processes) and 
statement level concurrency (signal assignments and 
parallel complex statements). Communication between 
processes here makes use of shared memory models. 

At the behavioral level there exist languages 
dedicated to data-flow descriptions. An example of 
such high level specification language is Silage, which 
is used as input for several DSP oriented synthesis 
systems: Cathedral/Mistral [6] Ptolemy [7], ... 

A whole existing set of high level languages, in 
addition to the high level specification languages listed 
above, is used at the system level for specifiaction, 
simulation and synthesis. A few examples of such 
languages are : StateCharts, SpecCharts [5], SDL [8], 
Estelle [9], Esterel [10] and LOTOS [11] All of them 
offer large possibilities in concurrency description and 
synchronization specification through communication. 
They differ however from each other by the constructs 
they provide and their "delay" or time concept. 

Within this paper, we shall look closer at the 
behavioral or algorithmic level and leave to one side 
pure system level specifications. 

 

4. Specification at the algorithmic level 
As one of the major objectives within VLSI domain 

is the improvement of the designers' productivity, 
several research groups have been working on the 
automation of synthesis leading to the development of 
CAD tools [1]. Logic and register transfer level 
synthesis have been popularized and are much used 
today. However in order to cope with circuits of 
increasing size, higher level synthesis tools are 
required. 

Within electronic fields, 2 main types of circuits can 
be distinguished: DSP and control-flow dominated 
circuits. Both types of circuits can be described at the 
algorithmic or behavioral level. However as seen 
previously (section 3) DSP circuits are more easily 
described using concurrent statements within data-flow 
descriptions [12], while sequential statements meet the 
needs of control-flow dominated circuits [13]. Several 
CAD tools for synthesis of behavioral descriptions are 
now being developed. These synthesis systems can be 
regrouped into 2 main sets corresponding to the type of 
circuits targetted by the algorithms implemented. 
However in both cases, when HDLs with wide 
statement sets, such as VHDL, are being used for the 
behavioral specification, only a subset of the language 
is really being accepted by each of them [14] [15] [21]. 
Unfortunately existing synthesis systems usually accept 
different sets of statements making it difficult to exploit 



a unique high level description by different synthesis 
systems. 

 

4.1. VHDL input for behavioral synthesis 
VHDL is the most commonly used hardware 

description language for behavioral descriptions 

feeding high-level synthesis systems. However as 
VHDL is event-driven and based on an asynchronous 
model, its descriptions are sometimes hard to synthesize 
automatically into synchronous circuits. Fixing a 
VHDL subset enables the prohibition of asynchrounous 
behaviors and delays. 
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Figure 3: High level synthesis 

 

Most of the high-level synthesis systems which 
accept VHDL specifications restrict themselves to a 
vertually sequential subset of the language with limited 
use to signals due to the fact that signals are updated 
only at the end of simulation cycles. The VHDL 
process is used to specify a performed algorithm with 
sequential statements. According to the VHDL 
semantics the algorithm executes in zero time, and only 
at wait statements, is time consumed. 

For control-dominated circuits, the behavioral 
description gives only a view of the coordination of 
different sub-systems making up the architecture, in 
other words the top control. In VHDL this may be 
described as a process that may make use of complex 
sub-systems through procedure and function calls. 
These sub-systems are behavioral components that are 
also called functional units. For high level synthesis, the 
latters are considered as black boxes, and the only 
pieces of information required are the list of procedures 
executed by each of them and informations about its 
interface protocols. A typical high level design process 
is outlined in figure 3. 

 

4.2. Architecture model for synchronous 
circuits 

A typical architecture for synchronous circuit 
synthesis is usually composed of a controller and a 
datapath, which is itself made of functional units, 
registers and other components for communication. At 
the behavioral level, the functional units may very often 
be complex modules, and are not restricted to simple 
standard ones [17] [16] [18]. The target architecture is 
illustrated by figure 4. 
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               Figure 4: Target Architecture 

The functional units, registers, multiplexers, bus 
drivers and the other datapath components are 
controlled by the synchronous finite state machine 
which starts the correct operations with the correct data 
in the correct clock cycle under the correct conditions. 
The various modules can be designed separately using 
different design methods. 

Such an architecture may include several functional 
units that running in parallel. The amount of parallelism 



is fixed according to the application and to the 
resources allocated; the functional units interact through 
a communication network. 

 

4.3. Component library for behavioral synthesis 
As introduced in the section above, synthesis 

requires a second input: a library of components. This is 
true whatever the level of abstraction; at the register 
transfer level, the library is a technology file giving 
informations about the gates available. Gate 
characteristics include their function, their fanin and 
fanout values, their size, ... [19]. For behavioral 
synthesis, some equivalent informations are required at 
a higher level. The components are much larger blocks 
than gates and may execute more than one function. As 
a result, the component library must list the set of 
operations for each component and include the 
execution scheme of each of them [18]. 

Behavioral components need to be abstracted for re-
use as a functional unit during high level synthesis. The 
high level synthesis view required for a functional unit 
links the behavioral and the implementation views; it 
includes the interface of the functional unit, its call-
parameters (corresponding to the operation parameters), 
the operation set executed by the functional unit as well 
as the parameter-passing-protocol for each operation. 
This protocol is expressed through static clock cycles; 
each operation needs to have a fixed predictable 
execution time. 

The designer invokes a functional unit from the 
library contained in his synthesis environment through a 
simple VHDL procedure or function call. The 
association between functional units and operations 
(known as functional unit binding) is usually made 
through names. This technique allows the use of 
existing hardware; large memorization blocks and I/O 
units can be handled as functional units and managed 
by the user in the behavioral description. 

 

 

 

4.4. Typical high level design-flow based on 
VHDL 

A VHDL based high-level design (also called 
behavioral or architectural design) starts with two kinds 
of information: a behavioral specification given in 
VHDL and an external functional unit library. It 
produces a register transfer level description that may 
be handled by existing logic synthesis tools, as outlined 
in figure 3. 

The behavioral description makes use of complex 
sub-systems through procedure and function calls. In 

figure 4, the VHDL process makes use of basic 
operations such as addition (+) and more sophisticated 
ones such as DCT and memory access. However for 
each procedure or function used, the library must 
include at least one functional unit able to execute the 
corresponding operation. In the case of figure 4, the 
library includes a set of functional modules (or 
functional units: FUs) able to execute the operation and 
fonction invoked by the behavioral VHDL description. 

During the different steps involved in high-level 
design, the functional units are used as black boxes. 
The only pieces of information required about each 
functional unit are the list of procedures executed by the 
functional unit and some informations about protocols. 
However to complete the description at the register 
transfer level, the details of the functional units are 
required. Each functional unit can be described by 
different views needed during different design steps. 

The high level design process transforms the initial 
specification into an architecture described at the 
register transfer level, that is, an architecture described 
at the clock cycle level. This includes: 

- Scheduling the operation of the behavioral 
description in order to fix their execution order. 

- Selecting from the library the needed modules for 
the execution of the operations of the initial 
description. 

- Splitting complex operations (for example, a DCT 
call) into a set of basic transfers. 

- Building an architecture composed of a datapath 
and a controller. 

In short, this process, also called behavioral 
synthesis, splits each VHDL process into a datapath and 
a controller, corresponding to the target architecture 
introduced previously for synchronous circuits. Any 
remaining data-flow (concurrent) statement is usually 
synthesized into pure combinatorial using directly 
register transfer or logic level synthesis tools. 

 

4.5. Impact of writing style 
The VHDL process within a behavioral 

specification corresponds to a processor once 
transformed into a lower abstraction level description. 
This processor makes use of coprocessors through 
procedure and function calls. In other words, after 
synthesis every behavioral operation will be achieved 
through an execution unit within the datapath. Each 
operation call is expressed as a set of register transfers. 

The performances of an automatically synthesized 
circuit ensue from the description made. Wait 
statements introduce external states within the control-
flow graph. These additional states can in fact be 



observed during behavioral simulation. At the 
behavioral level scalar types may sometimes be used; 
however during synthesis they need to be converted 
into bit-vectors of fixed (limited) size. 

Simple variables and signals within VHDL 
descriptions correspond to algorithmic level 
representations of registers, while arrays model 
memories. Memories are considered during high-level 
synthesis as being functional units, because memories 
coming from different (technology) libraries have 
seldom exactly the same characteristics and that in this 
way each of them can be described with personalized 
interface protocols and with its own execution scheme. 
Operation calls within the behavioral description can be 
made through the use of standard operators as well as 
through function and procedure calls. 

Declaring and using many different variables or 
signals enable parallelism with extra area overheads. On 
the other hand, if few of them are declared and that the 
statements share this restricted set of variables, then the 
data dependency created will forbid concurrency in the 
execution of the operations. Figure 6 gives an example 
illustrating such compromise; (a) and (b) describe 
exactly the same behavior. 

Nevertherless the VHDL excerpt (a) will lead to 
more hardware than (b) but the circuit generated may be 
faster. Excerpt (a) tends to 2 registers (tmp1 and tmp2) 
and 2 adders for maximum parallelism. With these 
ressources available, statements 1a and 2a can be 
executed in parallel. Therefore this excerpt requires 2 
clock cycles to execute. On the other hand excerpt (b) 
will require only 1 register (tmp1) and 1 adder, as 
statements 2a, 2b, and 3c can never be executed in 
parallel due to data dependency of tmp1. Meanwhile its 
execution will ask for 3 clock cycles. 

 

 

 

 

____________________________________________ 

variable tmp1,tmp2 : integer range 0 to 127; 

... 

tmp1 := a + b;  -- Statement 1a 

tmp2 := c + d;  -- Statement 2a 

tmp1 := tmp1 + tmp2; -- Statement 3a 

 

(a) VHDL targetting surface area optimization 

 

variable tmp1 : integer range 0 to 127; 

... 

tmp1 := a + b;  -- Statement 1b 

tmp1 := tmp1 + c; -- Statement 2b 

tmp1 := tmp1 + d; -- Statement 3b 

(b) VHDL targetting timing optimization 

__________________________________________ 

Figure 6: Equivalent VHDL excerpts 

 

5. Design methodology based on high level 
specification 
Starting with a system specification (at the behavioral 
level), the full design methodology to generate the 
corresponding layout includes 3 main steps (as shown 
in figure 7). (I) On analysis of the system level 
specification, it may be decided to split the system into 
sub-systems, each of them being complex enough to ask 
for individual synthesis sessions. The system level 
partitioning allows to fix the libraries of components (or 
functional units) to be used for synthesis. (II) 
Architectural exploration and synthesis can be achieved 
with the resulting behavioral specifications and using 
corresponding functional unit libraries. (III) The micro-
architecture generated can be used to pursue the 
synthesis down to a layout description, through register 
transfer level and logic synthesis using (commercial) 
CAD tools.  

The behavioral description is the result of the 
system analysis. Several alternatives can be found to the 
system level partitioning, leading to modifications 
carried out on the behavioral description. Some 
description reorganizations may require changes in the 
library of functional units also, as both are closely 
related. 

CAD tools automate usual synthesis tasks: 
scheduling and allocation. As these tasks are inter-
dependent, optimal scheduling and allocation are NP-
complete problems [2]. This is why heuristics are 
usually applied, meaning that what is often found as 
being optimal by synthesis systems may actually not be 
so, and that assumptions may have been made. The 
translation from high level specification to lower level 
descriptions is fortunately predictable when running 
CAD systems. Therefore when using high level 
synthesis tools, designers need to know about the 
synthesis algorithms or heuristics applied during 
automatic execution in order to forecast and optimize 
synthesis results through anticipation. 
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Figure 7: System specification to layout 

 

6. Conclusions 
Circuit design consists in several design iterations. 

As each of them is time-consuming, in order to meet the 
requirements for higher design quality and designers' 
productivity, design specifications need to be validated 
as early as possible. This is now achieved by using 
simulatable HDLs. Moreover these high level 
specifications are now used to speed up the design-
flow. Existing behavioral synthesis systems allow 
designers to translate algorithmic descriptions into 
register transfer level ones with reduced effort. 
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