
High-Level Specification for Digital System Design

M. BENMOHAMMED

LIRE Lab., Institut d'Informatique, Université de Cne,

25000 Constantine, ALGERIE.

 S. MERNIZ

LIRE Lab., Institut d'Informatique, Université de Cne,
25000 Constantine, ALGERIE.

Abstract

Design complexity has been increasing
exponentially this last decade. In order to cope
with such an increase and to keep up
designers' productivity, higher level
specifications were required. Moreover new
synthesis systems, starting with a high level
specification, have been developed in order to
automate and speed digital system design.

Keys-Words: VLSI, CAD, High-Level Synthesis,
Architectural Synthesis, HDL,
Verilog, VHDL1.

Introduction
The arrival and acceptance of standard Hardware

Design Languages (HDLs) such as VHDL and Verilog,
have promoted high level specification of electronic
circuits. HDLs may be used for the specification of
whole systems, as well as sub-systems that may then be
assembled within a hierarchical (structural) description.
The fact that various tools (for synthesis and
simulation) have been developed this last decade has
also helped high level specification for VLSI to emerge
and to gain more and more acceptance in the VLSI
design community [1].

1.1. Motivation for high level specification
Nowadays one of the major objectives within VLSI

domain is the improvement of the design quality and of
the designers' productivity. This is due to the fact that
the design process is characterized by 2 sets of factors :
constant factors and variable ones. For instance typical
large design budgets are usually fixed to around 10 to
15 persons over 18 months, and designers' productivity
has been evaluated to some 10 objects per day.

Controversely, design complexity has been
increasing exponentially since 1984 from a hundred

thousand transistors, to reach 1 to 2 million transistors
today. The design complexity forecast for the year 2000
is 50 million transistors for a 0.18 micron CMOS
technology. In order to cope with such an increase in
complexity, with the fixed budget, the objects designed
have gained in abstraction degree; thus instead of
designing 10 transistors daily as in the 80's, designers
are now creating some 10 algorithmic lines or mega
blocks per day. This shift has been smooth and the
objects handled have been gates and RTL HDL lines
meanwhile. The future shall be about designing system-
level specifications and sub-systems.

HDLs can be used for design specification at
various abstraction levels, from gates to the behavioral
level. We shall first go over the main abstraction levels,
which are usually encountered within a usual design-
flow, in section 2. A whole set of languages for high
level specifications at the behavioral and system levels
is introduced. We shall have a quick glance at a small
subset in section 3. Nowadays it becomes crucial to
speed up the design-flow so that the time to market is
reduced. Consequently, CAD tools are being more and
more used for synthesis. Register transfer level (RTL)
synthesis tools are commonly used and higher level
synthesis tools are now required. Section 4 is about
behavioral synthesis and the inputs required. Among
the different existing HDLs used at the behavioral level,
VHDL is the most commonly used being a standardized
IEEE HDL. This paper shall thus refer to this HDL for
high level specification. More details about the design
methodology are given in section 5.

2. Abstraction levels
Four abstraction levels shall be studied in this

section; their comparisons are about the following
characteristics: the time unit involved, the primitives
used for the specification and the description
organization for each of the description levels (figure 1)
[2].

Timing is used as a reference for classifying the
different specification levels, as it is one of the main

issue (if it is not the main one) during the process of
designing an integrated circuit. In fact, regardless the
abstraction level, the design process may be defined as
the refinement of high level concepts (including

operations, primitives, statements or constructs) into
lower level concepts using more detailed timing units.
Figure 1 illustrates this concept.

Description Level Time Unit Primitives Description
Organization

Physical Level Delay Gates, Devices Schematics

Logic and RT Levels Clock Cycle Register-Operator
Transfers

Boolean Equations,
FSMs

Algorithmic Level Control Step Computation Control BFSs, DFGs, CFGs

System Level Task Process,

Communication

Communicating
Processes

Figure 1: Abstraction Levels

2.1. Lower abstraction levels: physical, logic
and register transfer levels

At the lowest abstraction level the basic timing unit
is the delay within schematics. The design at the
physical level being specified in terms of gates and
devices interconnected through nets, timing is done in
considering gate and net latencies [3].

The next description level is called the register
transfer or logic level, where the design is specified at
the clock cycle level. A typical description states which
operations to execute at each clock cycle. In fact
descriptions at this level are generally made of a set of
registers and operators, and the functions to be executed
by the datapath are expressed as data transfers between
registers and executing blocks. Typical representations
used at this level are boolean equations, finite state
machines and BDDs. The description and simulation of
a whole system at the clock cycle level can be done
using register transfer level (RTL) primitives.

2.2. Architectural or behavioral level
At the behavioral or architectural level, the design is

specified in terms of control steps by means of
programs, algorithms, flowcharts, etc [2]. The concept
of operations and control statements is used to sequence
the input and output events; control statements, within
VHDL for instance, consist of instructions such as loop
and wait statements. Typical representations at this
level are behavioral finite state machines, control-flow
graphs, data-flow graphs and control/data-flow graphs,
all corresponding to event-driven specifications.
Descriptions at this level are often composed of a set of
protocols to exchange data with the external world and
an internal computation. The computation step being
itself composed of a set of operations executed between
two successive input or/and output events, may take
several clock cycles.

High Level (Behavioral)
Specification

Behavioral
Simulation

RTL
Simulation

High Level
Synthesis

RTL
Description

Timing#

Function#

Function OK

Timing OK

Figure 2: Design iteration at the behavioral level

2.3. Higher abstraction level: system level
The highest level of abstraction corresponds to the

system level [4] [5]. Specification at this level includes
distributed control and multi-thread computation, and
the corresponding basic timing unit is the computation

task. System level descriptions are composed of a set of
hierarchical, parallel and communicating processes. The
basic primitive is the process, which may consist of a
hardware part as well as a software one. Each of these
sub-systems may be as complex as a behavioral
description.

2.4. Design process
The whole design process consists in a set of

translation steps of a given specification into another
one of lower abstraction. Each of the translation step
corresponds to a design iteration, which has to be
repeated in case the design contraints are not satisfied.
The validation of a specification is thus an important
task that has to be performed as early as possible in the
design-flow, in order to minimize the amount of design
iterations. One design iteration is illustrated in figure 2,
with the behavioral synthesis step.

For large hierarchical designs, each of its sub-
systems can be designed independently using different
CAD tools. The verification of the coherence of a sub-
system, once it has been synthesized, can be achieved
by plugging the synthesized description within the
validated environment. Undertaking such a validation
as from the beginning of the synthesis-flow and at
several abstraction levels allows to delimit any
problems more easily earlier.

High level descriptions are usually smaller in size;
besides such descriptions are close to the algorithms
they implement, making it easier to write them.
Therefore these descriptions are also easier to maintain
and to debug. Moreover the simulation at this level is
faster.

3. High level specification languages
A wide range of high level specification languages

is available today. Owing to their different
characteristics (structure, hierarchy, concurrency,
synchronization, ...), they have been chosen for input by
different synthesis systems, according to the synthesis
performed : system level or behavioral level, control-
flow dominated oriented circuits or digital signal
processings.

All the existing high level specification languages
are based only on few concepts. First there are HDLs
(Hardware Description Languages) such as VHDL,
Verilog and HardwareC. These allow sequential
statements within processes as well as data-flow
behaviors, except HardwareC (which restricts data-flow
behaviors to simple netlists). They can thus be used to
describe behavioral level descriptions of both control-
flow dominated circuits and DSPs (based on data-flow
models). Hierarchy can be expressed within HDLs

through concurrent processes, blocks and component
instanciations. System level specifications can also be
achieved by these languages as they enable task level
concurrency (concurrency within processes) and
statement level concurrency (signal assignments and
parallel complex statements). Communication between
processes here makes use of shared memory models.

At the behavioral level there exist languages
dedicated to data-flow descriptions. An example of
such high level specification language is Silage, which
is used as input for several DSP oriented synthesis
systems: Cathedral/Mistral [6] Ptolemy [7], ...

A whole existing set of high level languages, in
addition to the high level specification languages listed
above, is used at the system level for specifiaction,
simulation and synthesis. A few examples of such
languages are : StateCharts, SpecCharts [5], SDL [8],
Estelle [9], Esterel [10] and LOTOS [11] All of them
offer large possibilities in concurrency description and
synchronization specification through communication.
They differ however from each other by the constructs
they provide and their "delay" or time concept.

Within this paper, we shall look closer at the
behavioral or algorithmic level and leave to one side
pure system level specifications.

4. Specification at the algorithmic level
As one of the major objectives within VLSI domain

is the improvement of the designers' productivity,
several research groups have been working on the
automation of synthesis leading to the development of
CAD tools [1]. Logic and register transfer level
synthesis have been popularized and are much used
today. However in order to cope with circuits of
increasing size, higher level synthesis tools are
required.

Within electronic fields, 2 main types of circuits can
be distinguished: DSP and control-flow dominated
circuits. Both types of circuits can be described at the
algorithmic or behavioral level. However as seen
previously (section 3) DSP circuits are more easily
described using concurrent statements within data-flow
descriptions [12], while sequential statements meet the
needs of control-flow dominated circuits [13]. Several
CAD tools for synthesis of behavioral descriptions are
now being developed. These synthesis systems can be
regrouped into 2 main sets corresponding to the type of
circuits targetted by the algorithms implemented.
However in both cases, when HDLs with wide
statement sets, such as VHDL, are being used for the
behavioral specification, only a subset of the language
is really being accepted by each of them [14] [15] [21].
Unfortunately existing synthesis systems usually accept
different sets of statements making it difficult to exploit

a unique high level description by different synthesis
systems.

4.1. VHDL input for behavioral synthesis
VHDL is the most commonly used hardware

description language for behavioral descriptions

feeding high-level synthesis systems. However as
VHDL is event-driven and based on an asynchronous
model, its descriptions are sometimes hard to synthesize
automatically into synchronous circuits. Fixing a
VHDL subset enables the prohibition of asynchrounous
behaviors and delays.

Scheduling

Allocation

Architecture Generation

Architecture
controller + datapath

Existing Hardware (VHDL)

Behavioral (VHDL)
Description

while (i<j) loop
 mread(adr,A);
 B:=DCT(A,...);
 mwrite(adr,B);
 i:= i+1; ...
end loop;

Functional Unit Library
(Operations, Timing, Protocols...)

FU:ram

mread

mwrite
mem

FU:i_dct

dct

idctFU:alu
+ -

...ctrl FU FU FU

network

alu ram

i_dct

High Level Design

Figure 3: High level synthesis

Most of the high-level synthesis systems which
accept VHDL specifications restrict themselves to a
vertually sequential subset of the language with limited
use to signals due to the fact that signals are updated
only at the end of simulation cycles. The VHDL
process is used to specify a performed algorithm with
sequential statements. According to the VHDL
semantics the algorithm executes in zero time, and only
at wait statements, is time consumed.

For control-dominated circuits, the behavioral
description gives only a view of the coordination of
different sub-systems making up the architecture, in
other words the top control. In VHDL this may be
described as a process that may make use of complex
sub-systems through procedure and function calls.
These sub-systems are behavioral components that are
also called functional units. For high level synthesis, the
latters are considered as black boxes, and the only
pieces of information required are the list of procedures
executed by each of them and informations about its
interface protocols. A typical high level design process
is outlined in figure 3.

4.2. Architecture model for synchronous
circuits

A typical architecture for synchronous circuit
synthesis is usually composed of a controller and a
datapath, which is itself made of functional units,
registers and other components for communication. At
the behavioral level, the functional units may very often
be complex modules, and are not restricted to simple
standard ones [17] [16] [18]. The target architecture is
illustrated by figure 4.

Top
Controller

Communication Network

Functional
Unit • • •

Functional
Unit•••FU

C
TR

L

FU FU

NETWORK

 Figure 4: Target Architecture

The functional units, registers, multiplexers, bus
drivers and the other datapath components are
controlled by the synchronous finite state machine
which starts the correct operations with the correct data
in the correct clock cycle under the correct conditions.
The various modules can be designed separately using
different design methods.

Such an architecture may include several functional
units that running in parallel. The amount of parallelism

is fixed according to the application and to the
resources allocated; the functional units interact through
a communication network.

4.3. Component library for behavioral synthesis
As introduced in the section above, synthesis

requires a second input: a library of components. This is
true whatever the level of abstraction; at the register
transfer level, the library is a technology file giving
informations about the gates available. Gate
characteristics include their function, their fanin and
fanout values, their size, ... [19]. For behavioral
synthesis, some equivalent informations are required at
a higher level. The components are much larger blocks
than gates and may execute more than one function. As
a result, the component library must list the set of
operations for each component and include the
execution scheme of each of them [18].

Behavioral components need to be abstracted for re-
use as a functional unit during high level synthesis. The
high level synthesis view required for a functional unit
links the behavioral and the implementation views; it
includes the interface of the functional unit, its call-
parameters (corresponding to the operation parameters),
the operation set executed by the functional unit as well
as the parameter-passing-protocol for each operation.
This protocol is expressed through static clock cycles;
each operation needs to have a fixed predictable
execution time.

The designer invokes a functional unit from the
library contained in his synthesis environment through a
simple VHDL procedure or function call. The
association between functional units and operations
(known as functional unit binding) is usually made
through names. This technique allows the use of
existing hardware; large memorization blocks and I/O
units can be handled as functional units and managed
by the user in the behavioral description.

4.4. Typical high level design-flow based on
VHDL

A VHDL based high-level design (also called
behavioral or architectural design) starts with two kinds
of information: a behavioral specification given in
VHDL and an external functional unit library. It
produces a register transfer level description that may
be handled by existing logic synthesis tools, as outlined
in figure 3.

The behavioral description makes use of complex
sub-systems through procedure and function calls. In

figure 4, the VHDL process makes use of basic
operations such as addition (+) and more sophisticated
ones such as DCT and memory access. However for
each procedure or function used, the library must
include at least one functional unit able to execute the
corresponding operation. In the case of figure 4, the
library includes a set of functional modules (or
functional units: FUs) able to execute the operation and
fonction invoked by the behavioral VHDL description.

During the different steps involved in high-level
design, the functional units are used as black boxes.
The only pieces of information required about each
functional unit are the list of procedures executed by the
functional unit and some informations about protocols.
However to complete the description at the register
transfer level, the details of the functional units are
required. Each functional unit can be described by
different views needed during different design steps.

The high level design process transforms the initial
specification into an architecture described at the
register transfer level, that is, an architecture described
at the clock cycle level. This includes:

- Scheduling the operation of the behavioral
description in order to fix their execution order.

- Selecting from the library the needed modules for
the execution of the operations of the initial
description.

- Splitting complex operations (for example, a DCT
call) into a set of basic transfers.

- Building an architecture composed of a datapath
and a controller.

In short, this process, also called behavioral
synthesis, splits each VHDL process into a datapath and
a controller, corresponding to the target architecture
introduced previously for synchronous circuits. Any
remaining data-flow (concurrent) statement is usually
synthesized into pure combinatorial using directly
register transfer or logic level synthesis tools.

4.5. Impact of writing style
The VHDL process within a behavioral

specification corresponds to a processor once
transformed into a lower abstraction level description.
This processor makes use of coprocessors through
procedure and function calls. In other words, after
synthesis every behavioral operation will be achieved
through an execution unit within the datapath. Each
operation call is expressed as a set of register transfers.

The performances of an automatically synthesized
circuit ensue from the description made. Wait
statements introduce external states within the control-
flow graph. These additional states can in fact be

observed during behavioral simulation. At the
behavioral level scalar types may sometimes be used;
however during synthesis they need to be converted
into bit-vectors of fixed (limited) size.

Simple variables and signals within VHDL
descriptions correspond to algorithmic level
representations of registers, while arrays model
memories. Memories are considered during high-level
synthesis as being functional units, because memories
coming from different (technology) libraries have
seldom exactly the same characteristics and that in this
way each of them can be described with personalized
interface protocols and with its own execution scheme.
Operation calls within the behavioral description can be
made through the use of standard operators as well as
through function and procedure calls.

Declaring and using many different variables or
signals enable parallelism with extra area overheads. On
the other hand, if few of them are declared and that the
statements share this restricted set of variables, then the
data dependency created will forbid concurrency in the
execution of the operations. Figure 6 gives an example
illustrating such compromise; (a) and (b) describe
exactly the same behavior.

Nevertherless the VHDL excerpt (a) will lead to
more hardware than (b) but the circuit generated may be
faster. Excerpt (a) tends to 2 registers (tmp1 and tmp2)
and 2 adders for maximum parallelism. With these
ressources available, statements 1a and 2a can be
executed in parallel. Therefore this excerpt requires 2
clock cycles to execute. On the other hand excerpt (b)
will require only 1 register (tmp1) and 1 adder, as
statements 2a, 2b, and 3c can never be executed in
parallel due to data dependency of tmp1. Meanwhile its
execution will ask for 3 clock cycles.

__

variable tmp1,tmp2 : integer range 0 to 127;

...

tmp1 := a + b; -- Statement 1a

tmp2 := c + d; -- Statement 2a

tmp1 := tmp1 + tmp2; -- Statement 3a

(a) VHDL targetting surface area optimization

variable tmp1 : integer range 0 to 127;

...

tmp1 := a + b; -- Statement 1b

tmp1 := tmp1 + c; -- Statement 2b

tmp1 := tmp1 + d; -- Statement 3b

(b) VHDL targetting timing optimization

__

Figure 6: Equivalent VHDL excerpts

5. Design methodology based on high level
specification
Starting with a system specification (at the behavioral
level), the full design methodology to generate the
corresponding layout includes 3 main steps (as shown
in figure 7). (I) On analysis of the system level
specification, it may be decided to split the system into
sub-systems, each of them being complex enough to ask
for individual synthesis sessions. The system level
partitioning allows to fix the libraries of components (or
functional units) to be used for synthesis. (II)
Architectural exploration and synthesis can be achieved
with the resulting behavioral specifications and using
corresponding functional unit libraries. (III) The micro-
architecture generated can be used to pursue the
synthesis down to a layout description, through register
transfer level and logic synthesis using (commercial)
CAD tools.

The behavioral description is the result of the
system analysis. Several alternatives can be found to the
system level partitioning, leading to modifications
carried out on the behavioral description. Some
description reorganizations may require changes in the
library of functional units also, as both are closely
related.

CAD tools automate usual synthesis tasks:
scheduling and allocation. As these tasks are inter-
dependent, optimal scheduling and allocation are NP-
complete problems [2]. This is why heuristics are
usually applied, meaning that what is often found as
being optimal by synthesis systems may actually not be
so, and that assumptions may have been made. The
translation from high level specification to lower level
descriptions is fortunately predictable when running
CAD systems. Therefore when using high level
synthesis tools, designers need to know about the
synthesis algorithms or heuristics applied during
automatic execution in order to forecast and optimize
synthesis results through anticipation.

 High Level
Synthesis

Library

RTL description

System Specification .

. Sub-System

op1 op2

op3

Analysis and Partitioning
of System

Architectural Exploration
and Synthesis

Sub-System

(CAD tools)
Logic Synthesis and

Place and Route

Layout Generation

Figure 7: System specification to layout

6. Conclusions
Circuit design consists in several design iterations.

As each of them is time-consuming, in order to meet the
requirements for higher design quality and designers'
productivity, design specifications need to be validated
as early as possible. This is now achieved by using
simulatable HDLs. Moreover these high level
specifications are now used to speed up the design-
flow. Existing behavioral synthesis systems allow
designers to translate algorithmic descriptions into
register transfer level ones with reduced effort.

References

[1] B. Courtois, CAD and Testing of ICs and
Systems: Where Are We Going?, Journal of
Microelectronics Systems Integration, Plenum
Press, 2000.

[2] D.D. Gajski, N.D. Dutt, A.C.-H. Wu and S.Y.-L.
Lin, High-Level Synthesis, Introduction to Chip
and System Design, Kluwer Academic
Publishers, 1992.

[3] M. Cand, E. Demoulin, J.-L. Lardy and P. Senn,
Conception des circuits intégrés MOS, Eyrolles,
1996.

[4] T. Ben Ismail and A. Jerraya, Synthesis Steps
and Design Models for CoDesign, IEEE
Computer, Special issue on Rapid-Prototyping of
Microelectronics Systems, Vol. 28(2), February
2001.

[5] D.D. Gajski, F. Vahid, S. Narayan and J. Gong,
Specification and Design of Embedded Systems,
Published by PTR Prentice Hall, 2000.

[6] S. Note, W. Geurts, F. Catthoor and H. De Man,
Cathedral-III: Architecture-Driven High-Level
Synthesis for High Throughput DSP
Applications, Design Automation Conference
1991.

[7] A. Kalavade and E.A. Lee, A Hardware-
Software Codesign Methodology for DSP
Applications, IEEE Design and Test of
Computers, September 1993.

[8] ITU-CCITT, Langages de Spécifications et de
Descriptions Fonctionnelles (SDL), CCITT
Recommandations Z.100-Z.104, Blue Book,
Geneva, November 1993.

[9] The SPECS Consortium and J. Bruijning,
Evaluation and Integration of Specification
Languages, Computer Networks and ISDN
Systems, Vol. 13, pages 75 to 89, 1997.

[10] G. Berry, G. Gontier, The Synchronous
Language ESTEREL: Design, Semantics ans
Implementation, INRIA Report No.842
published in Science of Computer Programming,
May 1988.

[11] ISO, LOTOS - A Formal Description Technique
Based on Temporal Ordering of Observational
Behavior, International Standard 880",
September 1998.

[12] J. Vanhoof, K. Van Rompaey, I. Bolsens, G.
Goossens and H. De Man, High-Level Synthesis
for Real Time Digital Signal Processing, Kluwer
Academic Publishers, 1993.

[13] G. Saucier and J. Trilhe (Editors), Synthesis for
Control Dominated Circuits, Elsevier Science
Publishers, IFIP 1999.

[14] P. Eles, K. Kuchcinski, Z. Peng and M. Minea,
Synthesis of VHDL Concurrent Processes,
EURO-DAC/EURO-VHDL 1994.

[15] A.A. Jerraya, I. Park and K. O'Brien, AMICAL:
An Interactive High-Level Synthesis
Environment, EDAC 2000.

[16] P. Gutberlet and W. Rosenstiel, Specification of
Interface Components for Synchronous Data
Paths, High-Level Synthesis Workshop 1994.

[17] F. Catthoor and L. Svensson, Application-Driven
Architecture Synthesis, Kluwer Academic
Publishers, 1993.

[18] Synopsys DesignWare User Guide, Version 3.1,
2004.

[19] M. Benmohammed, P. Kission, A. A. Jerraya,
Génération Automatique de Contrôleurs
Reprogrammable dans un Environnement de Synthèse
de Haut Niveau, INRIA, CARI'96, 9-16 Octobre
1996.

